Time-resolved fluorescence microscopy.
نویسندگان
چکیده
In fluorescence microscopy, the fluorescence emission can be characterised not only by intensity and position, but also by lifetime, polarization and wavelength. Fluorescence lifetime imaging (FLIM) can report on photophysical events that are difficult or impossible to observe by fluorescence intensity imaging, and time-resolved fluorescence anisotropy imaging (TR-FAIM) can measure the rotational mobility of a fluorophore in its environment. We compare different FLIM methods: a chief advantage of wide-field time-gating and phase modulation methods is the speed of acquisition whereas for time-correlated single photon counting (TCSPC) based confocal scanning it is accuracy in the fluorescence decay. FLIM has been used to image interactions between proteins such as receptor oligomerisation and to reveal protein phosphorylation by detecting fluorescence resonance energy transfer (FRET). In addition, FLIM can also probe the local environment of fluorophores, reporting, for example, on the local pH, refractive index, ion or oxygen concentration without the need for ratiometric measurements.
منابع مشابه
Time-resolved fluorescence microscopy of gunshot residue: an application to forensic science.
Time-resolved fluorescence microscopy has rapidly emerged as the technique of choice for many researchers aiming to gain specific insights into the dynamics of intricate biological systems. Although the unique advantages the technique provides over other methods have proven to be particularly useful in the biosciences, to date they have been largely unexploited by other research disciplines. In...
متن کاملTime-Resolved Luminescence Microscopy and Microarray Using Europium Chelate Labels
The luminescent Eu complex, DTBTA-Eu, is highly stable in terms of ligand-metal dissociation, and can be labelled to amino groups of proteins and other bio-molecules. Owing to the long lifetime of Eu luminescence, time-resolved measurement of DTBTA-Eu removes background fluorescence and enhances the sensitivity of the labelled materials. This property was applied to time-resolved luminescence m...
متن کاملFluorescence lifetime heterogeneity in aggregates of LHCII revealed by time-resolved microscopy.
Two-photon excitation, time-resolved fluorescence microscopy was used to investigate the fluorescence quenching mechanisms in aggregates of light-harvesting chlorophyll a/b pigment protein complexes of photosystem II from green plants (LHCII). Time-gated microscopy images show the presence of large heterogeneity in fluorescence lifetimes not only for different LHCII aggregates, but also within ...
متن کاملThermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.
Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in liv...
متن کاملImplementation of intensity-modulated laser diodes in time-resolved, pump-probe fluorescence microscopy.
We present the implementation of intensity-modulated laser diodes for applications in frequency-domain pump-probe fluorescence microscopy. Our technique, which is based on the stimulated-emission approach, uses two sinusoidally modulated laser diodes. One laser (635 nm) excites the chromophores under study, and the other laser (680 nm) is responsible for inducing stimulated emission from excite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2005